M1.(a) Velocity and speed correct
Distance and displacement correct

	velocity	speed	distance	displacement
vector	\checkmark			\checkmark
scalar		\checkmark	\checkmark	

(b) (i) $v^{2}=u^{2}+2 a s$
$v=\sqrt{u^{2}+2 a s} \quad \checkmark \quad v=\sqrt{1.5^{2}+2 \times 9.81 \times 0.65}$
$=(-) 3.9\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$ two or more sig fig needed $\left(-3.87337 \mathrm{~m} \mathrm{~s}^{-1}\right)$
$1^{\text {st }}$ mark for equation rearranged to make v the subject (note sq' root may be implied by a later calculation) penalise the use of $g=10 \mathrm{~m} \mathrm{~s}^{2}$ only on this question
$2^{\text {nd }}$ mark for substituting numbers into any valid equation $3^{\text {rd }}$ mark for answer Alt' approach is gainKE = lossPE missing out u gives zero marks answer only gains one mark [Note it is possible to achieve the correct answer by a wrong calculation]
(ii) velocity $/ \mathrm{ms}^{-1}$

first line descends from X to the dotted line at t_{A} or up to one division sooner \checkmark
(allow line to curve)
first line is straight and descends from X to $v=-4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark$ (allow tolerance one division)
second line has same gradient as the first, straight and descends to $v=$ $1\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad \checkmark$ (tolerance $1 / 2$ division)
a steep line may join the two straight lines but its width must be less than 2 divisions
(c) $s=u t+1 / 2 a t^{2}$
$\mathrm{t}=\sqrt{\frac{2 s}{a}}$ OR correct substitution seen into either equation $\mathrm{t}=\sqrt{\frac{2 \times 1.2}{9.81}}$
$=0.49(\mathrm{~s}) \checkmark(0.4946 \mathrm{~s})$
working must be shown for the first mark but not the subsequent marks

$$
v=s / t
$$

$=5.0 / 0.49=10\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark\left(10.2 \mathrm{~m} \mathrm{~s}^{-1}\right)$ (allow CE from their time)
[note it is possible to achieve the correct answer by a wrong calculation]

M2.(a) (i) $\quad(a=(v-u) / t)$
$=27.8(-0) / 4.6=6.04$
$=\underline{6.0}\left(\mathrm{~ms}^{-1}\right) \checkmark$
no need to see working for the mark
2 sig fig mark stands alone
(ii) $(F=m a)$
$=(360+82) \times 6.0(4) \quad$ (allow CE from (i))
$=2700(\mathrm{~N}) \checkmark(2670 \mathrm{~N}$ or 2652 N$)$
$F=442 \times(i)$
1 mark may be gained if mass of rider is ignored giving answer 2200N from 2175N
(b) (forward force would have to) increase \checkmark air resistance / drag increases (with speed)
driving / forward force must be greater than resistive / drag force no mark for wind resistance
(so that) resultant / net force stayed the same / otherwise the resultant / net force would decrease \checkmark
(c) horizontal force arrows on both wheels towards the right starting where tyre meets road or on the axle labelled driving force or equivalent
ignore the actual lengths of any arrows ignore any arrows simply labelled 'friction'
a horizontal arrow to the left starting anywhere on the vehicle labelled drag / air resistance
no mark for wind resistance, resistance or friction force the base of an arrow is where the force is applied
(d) $(F=P / v)$
$=22000 / 55 \checkmark$ Condone $22 / 55$ for this mark
$=400 \checkmark(\mathrm{~N})$

M3.(a) (i) 11 (m)
(ii) Use of $F=k \Delta L$ or $W=m g$

Allow use of $\Delta L=12 \mathrm{~m}$

$$
3400(\mathrm{~N})
$$

(b) Sets $m g=k \Delta L$
1.9 (m)
(c) Correct use of $W=1 / 2 k \Delta L^{2}$ or $1 / 2 F \Delta L$
$\Delta L=5 \mathrm{~m}$

A1

Correct use of $\triangle G P E=m g \Delta h$

$$
\Delta h=25 \mathrm{~m}
$$

States or uses $(m g \Delta h)-\left(1 / 2 k \Delta L^{2}\right)=1 / 2 m v^{2}$
C1
$19\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ cnao
(d) Same kinetic energy when rope begins to stretch

More work done per unit extension / stops in shorter distance "Shorter time" gets no credit

Increases force on jumper (increasing the risk of injury)

M4.(a) (i) Use of $K E=\frac{1}{2} m v^{2}$
C1

21.7 (J)

(ii) Use of $W=F s$

Allow 1 mark for use of suvat or $F=m a$

C1
0.70 (m)
(b) Use of $\Delta E_{\rho}=m g \Delta h$

Correct sub for $h\left(1.7 \sin 18^{\circ}\right)$
C1
77.3 (W)

OR
Use of $P=F v$
Correct sub for $F\left(m g \sin 18^{\circ}\right)$ or v $\left(1.7 \sin 18^{\circ}\right)$ 77.3 (W)

